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Computation of Character Decompositions of Class 
Functions on Compact Semisimple Lie Groups* 

By R. V. Moody * * and J. Patera 

Abstract. A new algorithm is described for splitting class functions of an arbitrary semisimple 
compact Lie group K into sums of irreducible characters. The method is based on the use of 
elements of finite order (EFO) in K and is applicable to a number of problems, including 
decompositions of tensor products and various symmetry classes of tensors, as well as 
branching rules in group-subgroup reductions. The main feature is the construction of a 
decomposition matrix D, computed once and for all for a given range of problems and for a 
given K, which then reduces any particular splitting to a simple matrix multiplication. 
Determination of D requires selection of a suitable set S of conjugacy classes of EFO 
representing a finite subgroup of a maximal torus T of K and the evaluation of (Weyl group) 
orbit sums on S. In fact, the evaluation of D can be coupled with the evaluation of the orbit 
sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is 
illustrated by some extensive examples of tensor product decompositions in E6. Modular 
arithmetic allows all computations to be performed exactly. 

1. Introduction. In the study of compact Lie groups, both in theory and applica- 
tion, the representation theory is fundamental. Numerous computational problems 
arise in this connection which, in general, pose significant difficulties for all but the 
lowest rank groups. In this paper we are primarily concerned with a new algorithm 
for determining the splitting of class functions on a simple or semisimple compact 
Lie group K into finite sums of irreducible characters of K. The solution to this 
rather general problem can be applied to a number of well-known problems arising 
in applications of group theory. 

For instance, consider the standard problem of determining the decomposition or 
branching of a unitary representation of a simple compact group K relative to a 
subgroup K. The given representation p: K - SU(V) determines a character Xv: 
K -- C which is a class function on K. Restricting X to K, we have 

(1.1) XIK Xi, 

where V = e Vi is the decomposition of V into irreducible K-modules and Xi is the 
character of K on Vi. The problem is to determine the right-hand side of (1.1). 
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Again, consider the problem of decomposing the tensor product of two irreducible 
representations pi: K -> SU(Vi), i = 1, 2. Then 

V ~~~~r 
(1.2) V1 2 

Vi 
i=3 

where the Vi are irreducible. Correspondingly for the characters, we have 

(1.3) Xv1?v2 = Xv1Xv2 E Xv, 
i=3 

Here the problem is to determine the decomposition on the right-hand side of (1.3). 
Another example occurs in the problem of finding the irreducible constituents of 

some symmetry class Vy of tensors determined by a representation p: K -4 SU(V) 
and some Young tableau Y. There is an explicit way of writing the character xy of 
VY in terms of the character X of p and the characters of the symmetric group [25, 
?12], [20]. We are left with the determination of the splitting of Xy. 

The splitting of class functions is always possible by a close examination of the 
weights involved, and for isolated examples of low rank this is probably the most 
efficient approach. We note, for instance, the tables of branching rules [1] for 
rank < 8 and dimensions less than 5000 (less than 10,000 for the exceptional 
groups). The approach here is directed to more extensive computations where the 
initial investment in time is compensated by the resulting efficiency of the splittings, 
and for higher-rank groups where practically no other methods exist. 

The method proposed here has as its central feature the construction of a certain 
complex matrix D called a decomposition matrix. For a given set of weights which 
encompasses all those which may appear in the envisioned decompositions, and for a 
given simple or semisimple Lie group K, a matrix D may be computed once and for 
all. This is the most laborious part of the procedure. After that, all decompositions 
are determined by a single matrix multiplication. 

The determination of decomposition matrices depends on the selection of suitable 
sets of elements of finite order (EFO) from K and the computation of their 
character values (or more precisely orbit sum values) on various irreducible represen- 
tations of K. Fortunately, by a bootstrapping procedure it is possible to combine the 
construction of D and the evaluation of the orbit sum values, thereby greatly 
alleviating the amount of computing required. The introduction of real and complex 
arithmetic can be avoided by the use of modular arithmetic. Apart from being more 
elegant in lower-rank cases, modular arithmetic becomes indispensable for avoiding 
round-off problems in higher ranks. 

Let us describe in a little more detail the ideas involved. The general problem is to 
determine the splitting of a set 

(1.4) f (k) a k)Xi, k = 1,..., t, 

of class functions f (k) on a compact Lie group K, where the Xi are the characters of 
certain irreducible representations pi of K. We will assume, as is usually possible in 
applications (in particular in the cases above), that we have some prior knowledge as 
to which Xi can possibly occur, so that our task is to determine the coefficients a$(k) 

(which may, of course, be zero). For simplicity of notation we will assume that we 
have only one class function f and suppress the superscripts (k). 
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Since f and the Xi are class functions, they are completely determined by their 
restriction to a given maximal torus T of K. Let us assume that such a torus is fixed 
once and for all. Now if xl, ... . xEg E T are some arbitrary elements then 

(1.5) f(xj) = E aiXi(xj), j = 1,..., g, 

determines a system of linear equations. 
Assuming that the xj are suitably independent, the ai are determined by the 

solution of (1.5). Of course, we can do much better than this by choosing the right 
elements xj. However, before we do this it is useful to introduce the orbit sums i. 
These are simply sums of exponential functions on T corresponding to weight orbits 
of the Weyl group, and are related to characters by equations of the form 

(1.6) Xk =Em'q, 

where, assuming appropriate indexing, M = (m') is a certain integral unipotent 
matrix called the dominant weight multiplicity matrix (see Section 3). The determina- 
tion of M is in any case essential for any computing in semisimple Lie groups. Our 
algorithm for computing M was described in [17], [3] and extensive tables appear in 
[4]. Instead of decomposing f according to (1.5) it is advantageous to determine the 
unknown coefficients bi in 

(1.7) f (xj) =Ebioi (xj) , j = 1 ... ., g. 

Now suppose that xl, .. ., xg are elements of a finite Abelian group A contained 
in T. Then some Fourier analysis leads to certain orthogonality-like relations, and 
the inversion of (1.7) becomes trivial. This is the origin of the decomposition matrix. 
The solution to (1.5) is obtained by back substitution. 

This then is the first ingredient in our algorithm. However, using Weyl group 
symmetry, a second enormous simplification occurs. Recall that if N is the normal- 
izer of T in K then we have the Weyl group W:= N/T (:= means that the 
right-hand side defines the left). W is a finite group whose size grows exponentially 
with the rank. It is well known that the W-conjugacy classes of T are a cross section 
of the conjugacy classes of K. Since the functions appearing in (1.4) are dependent 
only on the K-conjugacy classes, it is sufficient to take our Abelian group A to be 
W-stable (for all w E W, wAw-1 = A) and to take xl, .. ., xh to be representatives 
of the W-conjugacy classes of A together with their multiplicities in A. Usually we 
take A to be 

(1.8) T,:= {x E Tlx = 1}. 

Then xi, ..., xh are required to be representatives for the W-conjugacy classes of 
elements of T satisfying xI = 1. For these EFO there is a very precise and simply 
computable classification (see Section 2). The table in Section 7 illustrates the 
relation between h = h(n) and IT1l = n6 for K of type E6. The use of these classes 
obviously makles a huge difference in the number of elements we have to handle. 

Briefly, the contents of the paper are as follows. In Section 2 we describe the 
classification of the conjugacy classes of EFO in semisimple compact Lie groups. In 
Proposition 1 we determine the sizes of the conjugacy classes in Tn. Section 3 is 
devoted to the algorithm for splitting class functions and describing the decomposi- 
tion matrix D. In Section 4 we discuss the process of bootstrapping the construction 
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of D and orbit sum evaluation. Section 5 introduces modular arithmetic and Section 
6 collects together some additional comments and remarks. Finally, Section 7 
presents some E6 tensor product decompositions and some discussion of their 
computation. The present paper is an independent continuation of the general study 
of EFO begun in [18]; related and more particular problems may be found in [5], 
[19], [20], [23], [24]. Much of the program development of this project has been 
carried out by Wendy McKay whose tireless energy has been an enormous encour- 
agement to us. Two extensive samples of computations carried out with this 
algorithm are the E8 tables of characters and decompositions of plethysms and 
tensor products appearing in [13], [14]. 

2. Elements of finite order. In this section we establish the notation and briefly 
describe the classification of conjugacy classes of EFO in a simply connected 
semisimple compact Lie group. The classification is due to V. G. Kac [12]. (For a 
further description of the theory of these elements, their computation, and the 
determination of their values on characters and orbit sums the reader is referred to 
[19].) We then go on to determine the sizes of the various conjugacy classes in Ti 
(Proposition 1). 

Suppose that K is a simply connected semisimple compact Lie group of rank 1. 
Then K K1 X ... * XKr where K1,..., Kr are simply connected simple compact 
Lie groups. 

Conjugacy classes of EFO in K are determined by piecing together the corre- 
sponding classes of EFO in the various factors. If necessary then, we may assume 
that K is simple. For the present we do not make this assumption. 

Let f be the Lie algebra of K and let g be the complexification of f. Fix a 
maximal torus T of K once and for all and let it c f be its Lie algebra (thus t is a 
certain real subspace of g which is a Eucidean space under the Killing form). We 
have the usual accoutrements relative to t and some fixed (but otherwise arbitrary) 
ordering of the dual space t * of t: 

A c t* root system 
Q c t * root lattice 

P c t * weight lattice 

Q Ac t coroot lattice (Z-dual of P) 

(2.1) P Ac t coweight lattice (Z-dual of Q) 
(l={al,...,al}cA baseofA 

{ cot, ***, } c P basis of fundamental weights 

A A),*, } C QA dual basis to { WI) 
A + positive roots 

W Weyl group acting on t and t * 

Here Z-duals are taken relative to the natural painng (*,.): t * X t -R. An 
alternative and important characterization of Q A is as the kernel of the exponential 
mapping: 

exp 2Ti(.) 
(2.2) 0 Q^ -4 To 1. 
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The set { a , ...a, } is a base of the system of "dual" roots which may be 

considered as the system of roots of another Lie group K A. 

According to (2.2) the subgroup 
Tn:= {x E TIx =1} 

of T is in 1-1 correspondence with n Q A/Q 

(2.3) n n /Q 

Clearly, IJ I = n1. 
As we pointed out in the introduction, these are precisely the groups in which we 

are interested for character decompositions. As is well known, two elements X, Y E t 

determine K-conjugate elements exp2-riX and exp2vriY in K if and only if there 
exists w E W such that wX Ymod Q A. Alternatively we need a w E W:= Q A> 

W with w~X = Y. In this case we write X - Y. 
Since class functions do not distinguish conjugate elements, it is only necessary to 

determine 
CC(i) a cross section of the equivalence relation 
CC(ii) the size of each of these equivalence classes in t when they are reduced 

modulo Q A. 

We begin in the case when K is simple. Let -a0 denote the highest root El= njai 
of A relative to 11. Set no = 1, so that 

(2.4) nia1 = 0. 
i =o 

We call no, nl ..., n1 the numerical marks of K. The matrix 

(2.5) A = (Aij)o01,:= (2(ai, aj)/(aj, a,)), 

where (-,- ) is the standard positive definite form on t*, is the extended or affine 
Cartan matrix associated with K. Then CC(i) is handled using the well-known 
fundamental region F of the action of Won t: 

F is the set of points X E t satisfying 
Fl: (ati, X) >, 0, i = 1,...,91, 
F2: (-aog X) < . 

Then t = WFV:= {wXI w E W, X E F}, and for X, Y E F and w E W, wX = Y if 
and only if X = Y. The conjugacy classes of EFO in Tn are specified by the points of 
n Q An F. From the point of view of computation these are most easily determined 
as certain (I + 1)-tuples s = [so, ... , sl] of nonnegative integers (Kac coordinates 
[12], [18]) as follows. Let X E nQ An F and let x = exp 2 iX. Then Ad(x) (image 
of x in the adjoint group of K) has some finite order which is in fact the least 
positive integer M such that MX E P A. Note that the order of x is the least positive 
integer N such that NX E Q A. One has M I N and N I n. Define so, sl,s.. , sl by 

Ki: (ai, X) = s1/M, i = 1,...,1; 
K2: E1=0nisis M; 

and note that 
K3: gcd(so,.. .,s,) = 1. 

Conversely, every (I + 1)-tuple of nonnegative integers s = [s0,. .. , sl] satisfying 
Kl-3 for some M I N specifies a point X of F and, provided that X E n Q A, X 
defines a conjugacy class of Tn. The precise relation between M and N is given in 
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[18]. We note that s has two interpretations: first as a point of F, second as the label 
for the conjugacy class of elements determined by exp(27Tis). These are understood 
by the context. 

The second problem, CC(ii), is answered by Proposition 1 below, for which we 
need more notation. We recall that W is generated by the root reflections r1,..., r, 
in the simple roots a,,..., a,. We define ro to be the reflection in ao. Given 
s = [so, .. ., sfJ, an (I + 1)-tuple of nonnegative integers, we define W. to be the 
group generated by the ri for which si = 0, i = 0, . . ., l. 

PROPOSITION 1. Let X E -Q An F have coordinates s. Then the number of elements 
of T conjugate to exp 2 TiX is the index [W: W ] of W. in W. 

Proof. (Partially based on a proof of T. A. Springer [27].) The conjugates of 
exp 27TiX in T are given by exp 2rriwX as w runs through W. The number of such 
conjugates is the index of the subgroup 

S:= {w E W I exp 27TiwX = exp 27riX} 

in W. Now w E S if and only if wX X mod Q A, which happens if and only if 
there is a wv Ee W such that wvX = X. The stabilizer of a point in t under W is 
generated by the reflecting hyperplanes through it [2, Chapter V, Section 3.3]. These 
hyperplanes are of the form 

Ha = {Ye t Ia,Y) = k}, a E A, k E Z. 

Thus w is a product of some of the corresponding affine reflections, wV= 
rl k1,... ., , and w is the corresponding product r ...* r in W. Thus S is 
generated by the reflections rp such that 

(2.6) (,B, X) E Z. 

Let /B = Xbiai be a root satisfying (2.6). We can assume that /B E A+. Let 
s = [so, ..., s]. Then 

(13,X)= (1/M) bisi E Z ; 
i-1 

whence 

bisi 0(modM). 

Since 0 < El -1 bisi < E z=O n isi = M and bi < n i for each i, we have either 
(i) E -1 bisi = 0, or 
(ii) fi = -ao = El-, niai and s = 0. 

In either case, 

fi E AS := A n a = caIciEZci = O if si } $ 
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Conversely, we can see that if ,B is an element of A written as EY=20c,a0i with ci = 0 if 
Si # 0, then ,B satisfies (2.6). Indeed we have 

(/3, X) = (? 9 = co(Oa, X) 
\i=o / 

-coK niai X)= -co E Z if s0= , 

0 if s0o0. 

Now As is a subroot system of A and has a base nsL:= {ai IO < i < 1, si = 0). One 
way to see this is to consider the affine root system A based on the affine Cartan 
matrix A (2.5) with base { a0, a1, ..., a }) corresponding to a0i, 1,... , ail [16]. Then 
As := E={Oci&i I c5 = 0 if s # 0) C E1=0 Z&i is evidently a finite subroot system of 
A with base fl:= {&i IO < i < 1, si = 0). The reduction El =0 Z -&i Q with& xx xi 
has kernel Z(E.onilax) and so is injective on As. Thus Hls is a base and Ws is its 
Weyl group. Finally, then, S is generated by the rq, /3 E As and S = Ws. O 

In the case when K is only assumed to be semisimple, we have, corresponding to 
the decomposition K = K1 x ... X Kr, decompositions 

A = U . U Ar IH = n u lu lr, 

W= W1x **- xWr, F=F1x ... XFr etc. 

Each A i produces its own numerical marks n5 ) j = 1,..., 1() and each conjugacy 
class of EFO in K is specified by an r-tuple [s(1) ... , S. ], where each s(i) 
[S .. , sfl.. ] accords with K1-3. The common order of the elements of the 
conjugacy class is the least common multiple of the constituent EFO determined by 
the s(i). 

For a given s = [s(1), . . ., S(r)], W - W(l) x * x Ws(,), and the number of EFO 
in T conjugate to exp 2sTiS is 

[Wl: Wlsii] X... X [Wr: WYr)] = [W: Wl X.. X WJVrj = [V: J4j 

Thus Proposition 1 holds also when K is only assumed to be semisimple. 

3. Decomposing Class Functions. Let K be a semisimple simply connected 
compact group as before. We consider now the integral representation ring R(K) of 
K, that is, the Grothendieck ring formed out of the isomorphism classes of unitary 
representations of K, with addition and multiplication derived from the formation 
of direct sums and tensor products. For each unitary representation 4' on a space V 
we have the character X v = X,: K - C. If V has the weight space decomposition 

(3.1) V= $ Vx9 

where 2 c t * is the weight system of V relative to T, then X,, restricted to T is 
given explicitly by 

(3.2) X,IT= T (dimc VX) e2i. 

This acts on x = exp 2iTiX E T by 

(3.3) X+(x) = F(dimcVx)e2qi<,x> 
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For each of the fundamental weights co, ..., co of (2.1) denote by 4i the unitary 
representation of K with highest weight wi and let X, denote the corresponding 
character. Let X(K) be the ring generated by all the characters X,4 as 4 runs over 
all the unitary representations of K. The following facts are well known [1]: 

RR1: the set of X,, as 4 runs over the irreducible representations of K is a Z-basis 
of X(K); 

RR2: R(K) X(K) via [V] Xv; 
RR3: X(K) = Z[X1,*, X+,] and X+1, ..., X+, are algebraically independent over 

Z. 
Furthermore, define 

Z7[P]= { aXe27riXIA E P, ax E Z, finite sums}. 

Then Z[P] admits an action of W through we2ix:= e 2-7iwX, and for the subring of 
W-invariants, Z[P] w, we have [1, 6.19]. 

RR4: X(K)= Z[P]"'- 
We denote by XC (K) the complexification C ? z X(K) of X(K). 

Our point of view is that we are presented with an element f of XC (K) which we 
know as a function (at least on sufficiently many EFO). The object is to compute the 
decomposition 

f =Eap,Xpz, a,z, E- ?, 

guaranteed by RR1. It turns out to be better to compute in terms of the orbit sums. 
For each u Ee P, the orbit sum defined by y is 

(3.4) op:= E e27iX E Z[ pI W 
XE WpL 

where Wu:= w I ww E W }. Clearly, w, = for all w C W, u c P, so we restrict 
our attention to 0, for dominant u. We recall that the set of dominant elements of 
P, P++ , is defined by 

IU E -=P++- ('U, ai) >, 0 for each i = 1,9...,91. 
Every W-orbit of weights contains exactly one dominant element. 

If 4 is a representation of K on the space V with weight space decomposition 
(3.1) and if 0 ++ := On P++, then 

(3.5) X,A = E: (dimcVx)0x. 
As D++ 

The weight multiplicities dimc VX for dominant A are fundamental quantities in the 
computational theory of simple Lie groups. The reader is referred to [3], [17], [18] for 
more details. Extensive details of dominant weight multiplicities appear in [4]. 

We introduce the level vector I E t, uniquely specified by (a<x, 1) = 2 for i = 1, . . ., 
(cf. [4, Table 1]). Using 1, take any partial ordering < on P such that A < ' if 
(X, 1) < (t,1). In particular, if u - A = E2ciai with c5 E - N then A < u. For each 

E P+ + the set of A E P ++ such that A < u is finite. Furthermore, all the weights 
of the representation 4 with highest weight u satisfy A < u. Thus, if mX = dimc Vx 
in the representation afforded by 4ip(,u E.t P++) and X, is the character of {, then 
the system of equations 

(3.6) m , v E P++,v <, 
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determines ox in terms of the X, by means of the unipotent matrix (ml). These 
matrices, called dominant weight multiplicity matrices, are precisely the tables of [4]. 

A list { X1,..., ,r } of dominant weights is said to be consistent if for each Xi all 
the weights X occurring in the decomposition (3.6) of Xx, also appear in the list. 
Normally, we wish to work with consistent lists of weights. 

It follows from [2, Chapter VI, Section 3.4] that the set of orbit sums ox as X runs 
over P+ is a Z-basis of X(K) and that f,,'... Pz, is a set of algebraically 
independent ring generators of X(K). We define 

X (K) = { E cxex I X e P?, cx N . 

Definition. We say that a subset A of T separates two subsets S1, S2 of P if for 
each pair (Xi, X2) c S1 X S2 with X1 + X2 there is an x c A such that 
exp(2,riX1)(x) / exp(277iX2)(x). If S1 = S2 we simply say that A separates S1. If 
f = 2axe 27TiX c X(K), we say that A separates f if A separates the weights which 
actually appear in the sum (ax / 0). 

Let A be a finite Abelian subgroup of T. We define 

('>)A :Z[P] X Z[P] -_ C 

by 

(3.7) (f1 f2)A = E f1(X) f2(X) 
XEA 

where the overbar denotes complex conjugation. 
Below we assume that A is W-stable: wAw-1 c A for all w E W. 

PROPOSITION 2. Let A be a finite W-stable (Abelian) subgroup of T of order g. Let 
A,,u P++,A ,u 

(i) If A separates WX and W,u, then 

(OX, O)A = 8XA g1WXI 

where 'x. is the Kronecker 8-function. 
(ii) In any case (OX, 0P.)A is a nonnegative integral multiple of gIWX1. 

Proof. We have 

(4x, eiA = E 21i(-T)( ) - e 2i(-T)() 
xeA s WX T WIL (,T) WXX WIL xEA 

Suppose that A separates WX and W,u. Then none of the nonzero differences a - T 

in this sum vanishes on A. Thus 

(3.8) E e2,ri(f-T)(X) = iiTg 
xeA 

and (i) follows. Even without separation, the sum in (3.8) can only be 0 or g. If it is 
g, so that { a 4 and { T } are not separated by A, then neither are { wa 4 and { wT }, 
w E W, and hence we obtain a contribution of gIWXI to (ox, OP)A. Thus (ii) fol- 
lows. 0 

In the applications described in Section 1 the class functions to be decomposed 
are sums of terms e2,ixA, A E P, and hence lie in X+(K). Because of its importance, 
we prefer now to restrict ourselves to this situation and to make some comments 
about the general case at the end of the section. 
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Thus let 

(3.9) ~f ?VAA (K). 
XEP++ 

The ax e N, but are otherwise unknown. Let A be a finite W-stable subgroup of T 
of order g. Then 

(3.10) bx:= (g1WXI)-1(f I >A 

is an integer and 

(3.11) bx > ax 

with equality if A separates f. Since 

(3.12) f(1) = axlWXI, 

it is easy to check when { ax) is in fact a solution to (3.9). 
To diminish the work in summing involved in (3.10) we now assume that 

A = Tn = {x e TIxn = 1) and use the results of Section 2. Thus let Sl,...,Sh 

denote the points of F n n Q A and let xj = exp 21isj, j = 1,..., h. Let 

(3.13) Si= WSJ, j=1,...,h, 

so that there are in T precisely IWI/Sj elements conjugate to xj. 
In addition, we assume that the dominant weights appearing in (3.9) are amongst 

the set {AX,. .., Xr}, where X, < * - - < Xr. For each j = 1,..., r let Lj be the 
order of the stabilizer of Xi in W. Thus IWXjI = 1WI/Lj. Then Eq. (3.10) becomes 

h 

(3.14) bx = n'L; E Siif(xi)(x), j= 1, .(. ., r, 
i=J 

where we have written 'i for ox and the overbar denotes complex conjugation. 
The equations (3.14) suggest that we define the r x h matrix U = UEnI by 

(3.15) Uji = n "2 l1/2Sv4(xi). 

If Tn separates the weights of WX1 U U u WXr, then, replacing f of (3.9) by 0k' 
we have from (3.14) 

h h 

'kj = n'L1 E Si1ckk(Xi) Uki,(Xj) = iL1/Lk E UkjiJ 1 9 k, j j r. 
i=l i=l 

Thus 

(3.16) UUT = lrXr (r x r identity matrix). 

In terms of U, (3.10) reads 

(3.17) (bxI.. 9 bA) = n- FL/ UV ( f(xl), .. *,f (x*)h 

where L = diag{ L1, .. ., Lr } and S = diag{Sl, ... 9 SO). 
The r x h matrix 

(3.18) (DJ['n]) = n"/2xFEUS S = n'L( 1(xs))s 

is called the decomposition matrix at torsion n. Of course, DE[n] depends on the choice 
of weights {X, X. ... 4 . There are fairly natural choices for these-for example all 
the dominant weights up to a given level, or all the dominant weights of a given 
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congruence class (see Section 4) up to a given level. With this in mind, it makes sense 
to compute the decomposition matrices for suitable n once and for all. In Section 4 
we will show how this can be done in conjunction with the computing of the orbit 
sum values 41(xi). The question of knowing how large n needs to be to separate the 
required weights is not easy. In Section 6 we give a reasonable upper bound on n. In 
practice, we have been experimentally determining suitable n somewhat lower than 
this bound. 

On the basis of (3.10), (3.11) and (3.12) it appears that in principle the ax might 
be determined by minimizing trial solutions bAn) for various small n. Our experience 
is that this is not particularly effective. Once nonseparation becomes prevalent, the 
bAn) become badly wrong and several poor overestimates are of little use. 

The development through (3.10)-(3.18) is unchanged if f in (3.9) is replaced by an 
element of XC(K), except that bx in (3.10) is no longer necessarily an integer and 
(3.12) is no longer a decisive test for a correct solution. As long as one knows that 
Ox1, .. . 4 Ox are the only orbit sums in the decomposition of f and (3.16) holds, this 
is not essential. 

4. Bootstrapping. Up to this point we have been concentrating on a technique for 
decomposing class sums, given prior knowledge of the orbit sum values on suitable 
sets of EFO. In [18] we devoted much attention to the problem of computing 
character values, and although the method advocated there is indeed practical for 
ranks say < 10, it still can become fairly laborious when large numbers of EFO are 
involved. In the process of decomposing class functions it becomes possible to use 
decompositions available at any moment to compute unknown orbit sum values 
which in turn allow further decompositions. This leads to a bootstrap approach to 
computing both decomposition matrices and orbit sum values in which the orbit 
sums need only be evaluated by summing at the so-called elementary dominant 
weights [19]. The elementary dominant weights are the fundamental weights corre- 
sponding to the ends of the Coxeter-Dynkin diagram (see below). The orbit sum 
values for other dominant weights are computed by using various tensor and 
alternating products as we now explain. 

Let us assume that { Xi,..., Xr) E P++ is ordered and complete with respect to 
level in the sense that 

(i) i < j =*(Ai, I) < (Ay, I) 
(4.1) (ii) if ,u E P++ and (,u >1) < (X, >1) 

forsomej theny e { X,...,Xr}. 

In particular, such a set is consistent. We also assume that we have a set 
xj= exp 2,isj, j = 1,..., h, of EFO which represent the conjugacy classes of a 
finite W-stable Abelian group A which separates { X,.. ., Xr 4r. For simplicity we will 
actually assume that A = Tn as defined in Section 3. 

Our object is to compute both the orbit sum values Px,(xj) and the decomposition 
matrix D[n] (3.18). This is accomplished by an inductive process on the level. If the 
values ePx(xj), j = 1, . . ., h, are known for Xi,..., Xp and if we can write 

(4.2) Xp =r + Asg Ar sX O 
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(where necessarily r, s < p), then the class sum fA * px decomposes as 
p-l 

(4.3) (Akr * (AXs = -Ap + E ak(Ak 
k=1 

where the quantities ak N N. By assumption, the values f k(I)' k < p, are known 
and hence so are the first p - 1 rows of the decomposition matrix D[nl. That is 
sufficient to determine al, .. ., ap-, by direct matrix multiplication using (3.17), 
whence we have kxA(xj) from (4.3). 

If no decomposition (4.2) is available it is because p= w, where w is one of the 
fundamental weights (2.1). Provided that X does not belong to one of the ends of the 
Coxeter-Dynkin diagram-that is, a node attached to only one other node-we can 
use the method of alternating tensors to compute the orbit sum values. There is 
always an A-type string of nodes from some end to the node belonging to X-say 

(4.) ti tz . tp _ tp 

where X = S .. Let V be the irreducible representation with highest weight wto. We 
will denote characters by the symbol X subscripted by either the name of the 
representation space or the highest weight (for an irreducible representation), 
whichever is convenient. Then we have 

(4.5) X(APV) = w + E 

This is well known [10], although it is usually expressed with characters rather than 
orbit sums on the right-hand side of the equation. 

Now the values of X(APV) on EFO are computable directly as long as the so-called 
power maps are available. These are the mappings which describe for each EFO the 
conjugacy classes to which each of its powers belong. Precisely, they are the 
mappings 

(4.6) pj:{1,...,m1} J {1,...,h}, j= 1,...,h, 

which provide for each of the EFO x1 (with order min) the unique element xp (k) 
which is conjugate to xjk, k = 1,..., n. This type of information is not hard to 
obtain by methods described already in [18, Section 5]. 

Assuming that the power maps are in place, we have the formula [25, ?12], [20] 

(4.7) X(APV)(X) X= E h[d]a([d])(XV(Xl))d, ... (XV(Xp)), 
[ [d]=[d1,..,ddp] 

where [d] = [dl,..., dp] runs over all partitions 

ld 2d2 . . . pdp of {,p}; 

h Ed] = 

ldld,! ... pdPd! 

is the size of the conjugacy class of the symmetric group Sp with cycle type [d ]; and 

a: Sp { 1 ) is the alternating character, 

([d-]) ( 1) 
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Again the ax in (4.5) are obtained from the part of DN already available, and the 
values 0,,(xj) are obtained from (4.7) and (4.5). 

In this way, the pth row of D1'l is constructed, thus completing the induction 
step. Needless to say, the decompositions (4.3) and (4.5) may be used for the 
computing of arbitrary character values. The idea of using various classes of tensors 
to compute character values is not new. Indeed, it is the approach of J. Conway and 
L. Queen in [5]. However, their computations are very much special to E8 and there 
are no bootstrapping ideas to determine their tensor decompositions. 

The additional complexity involved in (4.7) has to be weighted against the direct 
computation of the corresponding orbit sum. For higher-rank algebras there is no 
question that (4.7) is more efficient, as a simple example shows. In D8, the 
fundamental representation corresponding to the trivalent node involves computing 
278!/226! = 1792 cosets before any summing is begun, whereas (4.7) can be utilized 
with a fork node and p = 2 to give 

(4.8) XA2V(X) = {XV(X) XV(X2)}. 

5. Modular Arithmetic. If one examines the entire collection of algorithms involved 
in computing weights, weight space multiplicities, and so on [3], [4], [17], [18] one 
sees that it is only in the evaluation of the orbit sums and character sums that real 
arithmetic enters. Its presence brings more than just loss of aesthetic appeal: 
round-off errors become a very acute problem in the high-rank/high-dimension 
cases, even when only integer answers are sought. Thus, in E8 we found in using the 
63 conjugacy classes of elements of order 8 that the round-off errors on a Cyber 835 
forced us to stop long before separation became a problem. Such problems are 
completely eliminated by using mappings of cyclotomic integers into suitable prime 
fields. 

Let p be a prime and let n be a positive integer dividing p - 1. Let On be the ring 
of the nth cyclotomic field Ln. Then in the prime field Fp= Z/pZ there is a 
primitive nth root t of 1. Since the minimum polynomial of ( over Fp is the nth 
cyclotomic polynomial On (x) (reduced modulo p), there is a ring homomorphism 
(5.1) : O?n = ZL[e2 Ti/'n p 

such that z is reduction mod p and p(e2'ff/i) = (. We define the "conjugate 
map" 4: On -- Fp through 4(e2ii/n) = {`. Thus, 4(f) = +(z) for all z e 0n. Most 
importantly, the kernel of 0 in Z is p7L. 

Now in the orbit sum and bootstrapping methods of Sections 3 and 4, we may 
perform all the calculations in Fp rather than in C, provided that we choose a prime 
p such that the torsion n and the Weyl group order I WI satisfy 
(5.2) n I p-1, gcd(IWI, p) = 1. 
The resulting modular decomposition matrix 

(5.3) -(n(l 
= (n-1L()s) ) + ( D~~~~ji })= (nLi oi (xi ) Si ) 

can be used to determine modular decompositions 

(5.4) (+l, T,b = (,OD n3) (Of (XJ....,"f (Xh))T 

of integral class sums. The decomposition (bl,..., b, )T then can be recovered 
provided that we begin with a suitably large prime p, or we use several primes and 
the Chinese remainder theorem. 
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The idea of number theoretical transforms is not new. J. D. Dixon advocated the 
modular calculation of characters of finite groups in [6], and their use in convolution 
algorithms is well established [21]. The situation here does however seem particularly 
suitable for their application, since the intermediate complex quantities are very 
large whereas the final answers are both integral and relatively small. 

As an example we have used the bootstrapping in the modular setting to compute 
the decompositions (4.3) and (4.5) for the first 38 (by level) weights of E8. For this 
we used the elements of order n = 8 and the prime 228 - 119. 

One should note that the orbit decomposition (4.3) and (4.5) tend to involve much 
larger integers than their corresponding reformulations in terms of characters. Thus 
it is preferable to perform the conversion back to Z only after such a reformulation 
(using the triangular system of equations (3.6)). 

6. Additional Remarks. (i) We begin with an estimate on the size of n required for 
Tn to separate the weights of A = WX1 U ... U WXr, where X1,. .., Xr are some 
given dominant weights. By definition we require that for each pair X, tt e A, 
X * , there is a point X of (n)Q A such that (X - tt, X) 0 Z. Since the Z-dual of 
Q A is P, this is equivalent to requiring that X - I 0 nP. We assume that K is 
simple. 

Let ci, . ., w, be the fundamental basis of P and let asA,., a A be the basis 
Z-dual to it in t (see Section 2). Let == 1Ecl= , j = 1,..., r, and define 

C = max{cij 1 < i < 1,1 <j < r 

(6.1) M =max{ niAcijI 1 A j < r }I 

where n AI . .. nA are the numerical marks of the "dual" group K A of K (see 
Section 2). 

PROPOSITION 3 (K simple). If n > C + M then T1 separates A. 

Proof. Take n > C + M. Let X,I e A, X * It. We show that X - I 0 nP. By the 
W-invariance of P and nP we may assume that y is dominant-say t = Xk. Let 
X = wXj. The coefficient of xi in wXj is 

(wxj,a A) x1, wlaf\) 
( i ) ( j i I 

Now w-la A is a coroot (that is a root of the root system AA:= W{ 4,A, aA) } of 
KA). Thus wlaA= kl 1dkak with Idk < nk, j = 1,...,1, and IKXj,w1aA i 
Enf CkA C M. Thus the coefficient of xl in wX1 - Xk = X - ,t is bounded in 
absolute value by M + C. This proves the result. O 

Formulas for the number h(n) of conjugacy classes of EFO in Tn are known. The 
semisimple case follows directly from the simple case, and for K simple, generating 
functions for h(n) appear in [18]. Explicit formulas are given by Djokovic in [7]. 
When n and IWI are relatively prime (or even under slightly more relaxed conditions 
[8]), Djokovic has given the elegant formula 

(6.2) h(n) m= + n 

where m, ..., m, are the exponents of K. 
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(ii) The congruence classes of weights are the Q-cosets of P. Any Weyl group orbit 
and any weight system of an irreducible representation of K lies entirely in such one 
congruence class. Thus we may speak of the congruence class of an orbit sum or an 
irreducible character. The center Z of K may be identified with the character group 
X(P/Q) of P/Q by 

(6.3) 0 G X(P/Q) + Ez Z 
with ze acting on weight spaces of weight X E P by 

z|v= O (&X + Q). 
Let ze = [z9,..., z4] be the corresponding point in F (actually the ze are the vertices 
of F [18]) so that 

(6.4) z I VA = e 

Now if X, e G P, then 

(6.5) E -2,i<A-z iz> |Z r" 
eGX(P/Q) 

where X = X + Q, i = ,t + Q. Thus we see that 

(6.6) (OX, 0ZZ =IZI |WA| IzWi i 8-Wi 

so that Z, and hence any group A c Tn which contains Z, can separate the 
congrunce classes. 

Let {y , z... , I} be the elements of P/Q and let y,z... , yl be some arbitrary 
representatives of the yj in P. Then for any class function f = axe2e iX on T we 
have the decomposition 

IZI 

f fk, where fk= E axe2X, 
k=1 XEYk 

and from (6.5) we have 

(6.7) fk(X) = E e2i<vkz9>f(z) 
[ZI eex(P/Q) 

In many problems, for instance those involving tensor products, it is possible to 
keep the congruence classes separate and there is no need to involve the center. 
However, in problems like group-subgroup reductions, mixing of classes is unavoida- 
ble and (6.7) provides a useful way to separate them. 

(iii) As we have suggested above, the use of orbit sums has several advantages over 
the direct use of characters. We briefly consider here the situation with characters. 
Consider first the problem of numerical integration of a class function f on G. 
Assuming Haar integrals JG and fT on G and T, both normalized so that JG 1 = 1 = 

JT19 then there is a well-known formula of H. Weyl, 

jf =Wl fdd, 

where d = n E (e i - e is the discriminant function on T [1, Chapter 6]. If 
f = LExpaxe 2, ax E C, then 

f /= Q axe2 <X,X> = a0. T tQ A 
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On the other hand, 

E e2,f x = l n' if (X,Q A) c nZ, 

xErQ^/Q { otherwise. 

Thus, 

(6.8) JfG= IWV-' fdd= JWJ-'n E (fdJ)(x), 
IXE-Q/QA 

where x = exp 2iriX, provided that the weights appearing in f dd are separated from 
(0). In view of the orthogonality relations for characters [1, Chapter 3], we have for 
irreducible characters X and X' of K 

(6.9) JWJ'ln'I E (Xd(Xd))(x) = 

xQ AIQ A 

provided that Tn separates the weights appearing in the function xX'dd. This 
certainly allows numerical decompositions of character sums in principle. However, 
separating the weights of dd is an additional expense and, unlike the case of the 
orbit sums, we do not have well-defined useful information (like (3.11)) in the failure 
of separation. 

(iv) We have always assumed that an advance knowledge of the weights which 
may occur in the character decomposition of a given f E X(K) is at our disposal. A 
few examples of this might be helpful. Consider the problem of decomposing the 
tensor product (1.2) or, what amounts to the same thing, decomposing the product 
(1.3) of Xv1Xv2 E X+(K). If the highest weight of Vi is Xi, i = 1,2,...,r, then 
Xi < X1 + X2, i = 3,...,r. Infact,itcanbeshownthat X3,...,Xr lieintheset Q of 
dominant weights of the irreducible module of highest weight X1 + X2 (S2 is 
complete). Although it is irrelevant to the orbit sum method, it is interesting to note 
that there is a "least" Xi, say X3, with X3 < Xi for i = 3, . . ., r. This X3 is the 
dominant weight in the W-orbit of X1 - X2 [24]. 

(v) Consider the problem of subgroup reduction. Here we have K c K and the 
task is to perform the character decomposition or branching of a function f e X+(K) 
when it is restricted to K. If T and T are maximal tori of K and K, respectively, 
then we may always assume that T c T. Then, under restriction X A-+ X, weight 
systems of K-modules project onto weight systems of K-modules. It is always 
possible to choose total orderings i and i on the weight lattices P and P (relative 
to T and T) such that for all X, ,u E P, -< ,u implies X < ,u [9, Chapter 1]. Use 
these to order the corresponding root systems A and A, and let II and II be the 
corresponding bases. Then for 

& EA O & a -O<o. 
If ,u is a dominant weight in P then the W-orbit W,i lies in {,u - ?cacI xE II, 
Ca N ), and hence for all X E W,I, X i ,u. Thus we have strict control over the 
weights appearing in the reduction of orbit sums. 

7. E6 Example. The Tables 1 and 2 below contain the dominant weight matrices 
(mt) for the E6-congruence classes 0 and 1. The matrix for class 2 can be obtained 
directly from that of class 1 by permuting the labels according to the E6 diagram 
symmetry. These tables are examples of the form of the main set of tables of [4]. In 
addition to the dominant weight multiplicities, Tables 1 and 2 provide the following 
auxiliary information about the representations. 
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S.P.: Scalar product (X, X) of the dominant weight X, so normalized that 
(a, a) = 2 det(Cartan matrix) for short roots a. 

O.S.: Orbit size, the number of weights on the Weyl group orbit of X. 
LEVEL: The number of levels of the weight system Q(X). 
DIM'N: The dimension of the representations with the highest weight X. 
WEIGHT: The weight X given by its coordinates in terms of the fundamental 

weights, arranged into a Dynkin diagram. 
NUMBER: Numbering of dominant weights of the class (this has no canonical 

meaning). 
The Tables 3-6 below are examples of E6 tensor product decompositions which 

were obtained by the method outlined in Section 3. We took advantage of the 
congruence classes and computed one decomposition matrix D for each class. For 
E6we have the following values for h(n) = number of conjugacy classes of EFO in 
T-n- 

n 2 3 4 5 6 7 8 9 10 11 12 

h(n) 3 8 14 26 49 77 124 197 287 418 603 

For the purposes of the example we chose the 77 conjugacy classes of EFO in T7 
and constructed the corresponding decomposition matrices, referring to the ordered 
list of E6 dominant weights (cf. Tables 1 and 2). The elements of T7 separate all the 
weights in at least the first 30 weights of each congruence class. For instance, for 
class 0 the matrix UUT (3.16) is 152X52 + E,,,34 + E3415+ E32,32 + E3,3 + 8,38 + 

E42,42 + E43,43+ E51,51, where '52X52 is the 52 x 52 identity matrix and E,j is the 
(i, j) matrix unit with 1 in the (i, j)th position and 0's elsewhere. Thus one sees for 
example that the orbits of weight #15 and *34 are 'aliased' by T7. It is worthwhile 
noting however that the elements of order 7 do better than one might anticipate 
from Proposition 3. There, for class 0 and the first 30 representations, C and M of 
Section 6(i) are 5 and 6, respectively, with corresponding value of 12 for n in 
Proposition 3. 

After removing the obvious symmetries, there are four types of tensor products 
that one needs to consider: 

class 0 ? class 0 class 0 (Table 3) 
class 0 ? class 1 class 1 (Table 4) 
class 1 0 class 1 class 2 (Table 5) 
class 1 0 class 2 class 0 (Table 6) 

The resulting tables were obtained by using the decomposition matrices on all the 
mutual products of the first 10 nontrivial representations of each class and retaining 
those which passed the (definitive) test (3.12). We have denoted the irreducible 
representations by number-letter pairs where the number refers to the numbering of 
the highest weight (cf. Tables 1 and 2) and the letter to the class by the convention 
A + class 0, B * class 1, C + class 2. Thus a tensor product of representations 2B 
and 3C is denoted by (2B, 3C). 

There are other E6 tensor product decomposition tables in the literature [11], (26], 
[28], calculated by entirely different methods. We have made no attempt to compare 
these methods w ith the one here. 
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Finally, let us recall that the unique feature of the decomposition matrix approach 
is in its applicability to any class function (providing that the weight systems of the 
irreducible components are separated by the Tn in question). The present example is 
a result of our attempt to determine by direct computation how far the separation 
extends using T7. The decompositions were computed in a couple of minutes on a 
CDC Cyber 835. 
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