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Computation of Character Decompositions of Class
Functions on Compact Semisimple Lie Groups*

By R. V. Moody ** and J. Patera

Abstract. A new algorithm is described for splitting class functions of an arbitrary semisimple
compact Lie group K into sums of irreducible characters. The method is based on the use of
elements of finite order (EFO) in K and is applicable to a number of problems, including
decompositions of tensor products and various symmetry classes of tensors, as well as
branching rules in group-subgroup reductions. The main feature is the construction of ‘a
decomposition matrix D, computed once and for all for a given range of problems and for a
given K, which then reduces any particular splitting to a simple matrix multiplication.
Determination of D requires selection of a suitable set S of conjugacy classes of EFO
representing a finite subgroup of a maximal torus 7" of K and the evaluation of (Weyl group)
orbit sums on S. In fact, the evaluation of D can be coupled with the evaluation of the orbit
sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is
illustrated by some extensive examples of tensor product decompositions in Eg. Modular
arithmetic allows all computations to be performed exactly.

1. Introduction. In the study of compact Lie groups, both in theory and applica-
tion, the representation theory is fundamental. Numerous computational problems
arise in this connection which, in general, pose significant difficulties for all but the
lowest rank groups. In this paper we are primarily concerned with a new algorithm
for determining the splitting of class functions on a simple or semisimple compact
Lie group K into finite sums of irreducible characters of K. The solution to this
rather general problem can be applied to a number of well-known problems arising
in applications of group theory.

For instance, consider the standard problem of determining the decomposition or
branching of a unitary representation of a simple compact group K relative to a
subgroup K. The given representation p: K — SU(V') determines a character ¥,
K — C which is a class function on K. Restricting ¥ to K, we have

(1.1) Xlx =2 xi»

where V' = @ V; is the decomposition of ¥V into irreducible K-modules and x ; 1s the
character of K on V.. The problem is to determine the right-hand side of (1.1).
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800 R. V. MOODY AND J. PATERA

Again, consider the problem of decomposing the tensor product of two irreducible
representations p;: K —» SU(V}), i = 1,2. Then

(1.2) nev,=YVv,
i=3
where the V, are irreducible. Correspondingly for the characters, we have
(1-3) Xvev, = XvXv, = Z X,
i=3

Here the problem is to determine the decomposition on the right-hand side of (1.3).

Another example occurs in the problem of finding the irreducible constituents of
some symmetry class V'Y of tensors determined by a representation p: K = SU(V)
and some Young tableau Y. There is an explicit way of writing the character x¥ of
V'Y in terms of the character x of p and the characters of the symmetric group [25,
§12], [20]. We are left with the determination of the splitting of xY.

The splitting of class functions is always possible by a close examination of the
weights involved, and for isolated examples of low rank this is probably the most
efficient approach. We note, for instance, the tables of branching rules [1] for
rank < 8 and dimensions less than 5000 (less than 10,000 for the exceptional
groups). The approach here is directed to more extensive computations where the
initial investment in time is compensated by the resulting efficiency of the splittings,
and for higher-rank groups where practically no other methods exist.

The method proposed here has as its central feature the construction of a certain
complex matrix D called a decomposition matrix. For a given set of weights which
encompasses all those which may appear in the envisioned decompositions, and for a
given simple or semisimple Lie group K, a matrix D may be computed once and for
all. This is the most laborious part of the procedure. After that, all decompositions
are determined by a single matrix multiplication.

The determination of decomposition matrices depends on the selection of suitable
sets of elements of finite order (EFO) from K and the computation of their
character values (or more precisely orbit sum values) on various irreducible represen-
tations of K. Fortunately, by a bootstrapping procedure it is possible to combine the
construction of D and the evaluation of the orbit sum values, thereby greatly
alleviating the amount of computing required. The introduction of real and complex
arithmetic can be avoided by the use of modular arithmetic. Apart from being more
elegant in lower-rank cases, modular arithmetic becomes indispensable for avoiding
round-off problems in higher ranks.

Let us describe in a little more detail the ideas involved. The general problem is to
determine the splitting of a set

(14) f(k)=za1(k)x:" k=1»---,t,

of class functions f¥) on a compact Lie group K, where the x; are the characters of
certain irreducible representations p; of K. We will assume, as is usually possible in
applications (in particular in the cases above), that we have some prior knowledge as
to which x, can possibly occur, so that our task is to determine the coefficients a{*)
(which may, of course, be zero). For simplicity of notation we will assume that we
have only one class function f and suppress the superscripts (k).
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Since f and the x; are class functions, they are completely determined by their
restriction to a given maximal torus T of K. Let us assume that such a torus is fixed
once and for all. Now if x,,..., x ¢ € T are some arbitrary elements then

(1.5) f(x,-)=za,~x,-(x,~), Jj=1...8
determines a system of linear equations.

Assuming that the x; are suitably independent, the a; are determined by the
solution of (1.5). Of course, we can do much better than this by choosing the right
elements x - However, before we do this it is useful to introduce the orbit sums ¢,.
These are simply sums of exponential functions on T corresponding to weight orbits
of the Weyl group, and are related to characters by equations of the form

(1’6) Xk = Z m;cd)i’

where, assuming appropriate indexing, M = (m’) is a certain integral unipotent
matrix called the dominant weight multiplicity matrix (see Section 3). The determina-
tion of M is in any case essential for any computing in semisimple Lie groups. Our
algorithm for computing M was described in [17], [3] and extensive tables appear in
[4]. Instead of decomposing f according to (1.5) it is advantageous to determine the
unknown coefficients b, in

(1.7) f(xj)=2bi¢i(xj)? Jj=1...,8

Now suppose that xy, ..., x, are elements of a finite Abelian group 4 contained
in T. Then some Fourier analysis leads to certain orthogonality-like relations, and
the inversion of (1.7) becomes trivial. This is the origin of the decomposition matrix.
The solution to (1.5) is obtained by back substitution.

This then is the first ingredient in our algorithm. However, using Weyl group

symmetry, a second enormous simplification occurs. Recall that if N is the normal-
izer of T in K then we have the Weyl group W:= N/T (:= means that the
right-hand side defines the left). W is a finite group whose size grows exponentially
with the rank. It is well known that the W-conjugacy classes of T are a cross section
of the conjugacy classes of K. Since the functions appearing in (1.4) are dependent
only on the K-conjugacy classes, it is sufficient to take our Abelian group 4 to be
W-stable (for all w € W, wAw™ = 4) and to take x,,..., x, to be representatives
of the W-conjugacy classes of A together with their multiplicities in 4. Usually we
take A4 to be
(1.8) T,={xeT|x"=1}.
Then x,,...,x, are required to be representatives for the W-conjugacy classes of
elements of T satisfying x" = 1. For these EFO there is a very precise and simply
computable classification (see Section 2). The table in Section 7 illustrates the
relation between h = h(n) and |T,| = n® for K of type E,. The use of these classes
obviously makes a huge difference in the number of elements we have to handle.

Briefly, the contents of the paper are as follows. In Section 2 we describe the
classification of the conjugacy classes of EFO in semisimple compact Lie groups. In
Proposition 1 we determine the sizes of the conjugacy classes in 7). Section 3 is
devoted to the algorithm for splitting class functions and describing the decomposi-
tion matrix D. In Section 4 we discuss the process of bootstrapping the construction
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of D and orbit sum evaluation. Section 5 introduces modular arithmetic and Section
6 collects together some additional comments and remarks. Finally, Section 7
presents some E, tensor product decompositions and some discussion of their
computation. The present paper is an independent continuation of the general study
of EFO begun in [18]; related and more particular problems may be found in [5],
[19], [20], [23], [24]. Much of the program development of this project has been
carried out by Wendy McKay whose tireless energy has been an enormous encour-
agement to us. Two extensive samples of computations carried out with this
algorithm are the Eg tables of characters and decompositions of plethysms and
tensor products appearing in [13], [14].

2. Elements of finite order. In this section we establish the notation and briefly
describe the classification of conjugacy classes of EFO in a simply connected
semisimple compact Lie group. The classification is due to V. G. Kac [12]. (For a
further description of the theory of these elements, their computation, and the
determination of their values on characters and orbit sums the reader is referred to
[19].) We then go on to determine the sizes of the various conjugacy classes in 7,
(Proposition 1).

Suppose that K is a simply connected semisimple compact Lie group of rank /.
Then K = K, X --- XK, where K,..., K, are simply connected simple compact
Lie groups.

Conjugacy classes of EFO in K are determined by piecing together the corre-
sponding classes of EFO in the various factors. If necessary then, we may assume
that X is simple. For the present we do not make this assumption.

Let £ be the Lie algebra of K and let g be the complexification of f. Fix a
maximal torus T of K once and for all and let it c f be its Lie algebra (thus t is a
certain real subspace of g which is a Euclidean space under the Killing form). We
have the usual accoutrements relative to t and some fixed (but otherwise arbitrary)
ordering of the dual space t* of t:

A ct* root system

Q c t* root lattice

P ct* weight lattice

Q"ct coroot lattice (Z-dual of P)

P"Ct coweight lattice (Z-dual of Q)
II={a,...,0,} €A baseof A

{wy,...,0,} C P basis of fundamental weights
{af',...,a'} € Q" dualbasisto {w,..., e}
A* positive roots ‘

(2.1)

W  Weyl group acting on t and t*.
Here Z-duals are taken relative to the natural pairing ( -, ): t* Xt - R. An
alternative and important characterization of Q * is as the kernel of the exponential
mapping:

2mi(-
(2.2) 050>t 51
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The set {a)",...,a"} is a base of the system of “dual” roots which may be
considered as the system of roots of another Lie group K *.
According to (2.2) the subgroup
T,={xeT|x"=1}
of T is in 1-1 correspondence with :Q "/Q ":

(2.3) T,=30"/Q"
Clearly, |T,| = n'.

As we pointed out in the introduction, these are precisely the groups in which we
are interested for character decompositions. As is well known, two elements X, ,Yet
determine K-conjugate elements exp 2#iX and exp2#iY in K if and only if there
exists w € W such that wX = Ymod Q ". Alternatively we need a w € W:= Q"%
W with wX = Y. In this case we write X ~ Y.

Since class functions do not distinguish conjugate elements, it is only necessary to
determine

CC(i) a cross section of the equivalence relation ~

CC(ii) the size of each of these equivalence classes in t when they are reduced

modulo Q .

We begin in the case when K is simple. Let —a, denote the highest root ¥!_; n,a;

of A relative to II. Set ny = 1, so that

i
(2.4) Y na,=0.
i=0
We call ng, ny, ..., n, the numerical marks of K. The matrix
(2.5) A=(4)0ci, = (A, ) /(a;,0)),

where (-,- ) is the standard positive definite form on t*, is the extended or affine
Cartan matrix associated with K. Then CC(i) is handled using the well-known
fundamental region F of the action of W on t:

F is the set of points X € t satisfying

Fl1:{a;,, X)>0,i=1,...,],

F2:{(-ay X) < 1.
Then t = WF:= {(wX|we W, X<€F}),andfor X,Y € Fandw € W, wX = Y if
and only if X = Y. The conjugacy classes of EFO in T, are specified by the points of
+0 "N F. From the point of view of computation these are most easily determined
as certain (/ + 1)-tuples s = [s,,...,s,] of nonnegative integers (Kac coordinates
[12], [18]) as follows. Let X € L0 "N F and let x = exp27iX. Then Ad(x) (image
of x in the adjoint group of K) has some finite order which is in fact the least
positive integer M such that MX € P *. Note that the order of x is the least positive
integer N such that NX € Q". One has M | N and N |n. Define s, 54, ..., s, by

Kl: {o;, X) =s,/M, i = 1,...,1,

K2: X! _ons, = M,
and note that

K3: ged(sg,...,s5) = 1.
Conversely, every (/ + 1)-tuple of nonnegative integers s = [s,,...,s,] satisfying
K1-3 for some M |N specifies a point X of F and, provided that X € 10", X
defines a conjugacy class of 7,. The precise relation between M and N is given in
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[18]. We note that s has two interpretations: first as a point of F, second as the label
for the conjugacy class of elements determined by exp(2wis). These are understood
by the context.

The second problem, CC(i1), is answered by Proposition 1 below, for which we
need more notation. We recall that W is generated by the root reflections ry,..., r,
in the simple roots aj,...,a,, We define r, to be the reflection in aj, Given
s = [sg,..., 5], an (/ + 1)-tuple of nonnegative integers, we define W, to be the
group generated by the r, for which s, =0,i=0,...,/.

PROPOSITION 1. Let X € 0 “N F have coordinates s. Then the number of elements
of T conjugate to exp 2miX is the index [W: W] of W_in W.

Proof. (Partially based on a proof of T. A. Springer [27].) The conjugates of
exp27iX in T are given by exp27iwX as w runs through W. The number of such
conjugates is the index of the subgroup

S:= {we W|exp2miwX = exp2miX }

in W. Now w € S if and only if wX = Xmod Q *, which happens if and only if
there is a w € W such that wX = X. The stabilizer of a point in t under W is
generated by the reflecting hyperplanes through it [2, Chapter V, Section 3.3]. These
hyperplanes are of the form

H&={Yet|<a,Y)=k}, aelA kel.

Thus w is a product of some of the corresponding affine reflections, w =
T k> Tpk, and w .is the corresponding product rg --- rg in W. Thus S is
generated by the reflections r, such that

(2.6) (B, X) el
Let B =Xb;a; be a root satisfying (2.6). We can assume that g € A*. Let

s = [sg,..., ;). Then

i
(B, X) =(1/M)E biSiEZBO’
i=1
whence
i
Y bs,=0(mod M).
i-1

Since 0 < X! _, b,s, < L!_yn,s; = M and b, < n, for each i, we have either
(1) 25 —1bis;=0,0r
(i) B = —ay = X!_,n,a, and s, = 0.

In either case,

!
BeA =An{a= Y calc,;€Z, ¢c;=0ifs; #0}.
j=0
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Conversely, we can see that if 8 is an element of A_written as £/_,c,a; with ¢; = 0 if
s; # 0, then B satisfies (2.6). Indeed we have

<B/’ X)= < go Ciai»X> = co{@g, X)

!
—co< Y n,.a,,X> =, €Z ifsy,=0,

i=1

0 ifs,#0.

Now A, is a subroot system of A and has a base I := {«;]0 < i</, 5; = 0}. One
way to see this is to consider the affine root system A based on the affine Cartan
matrix A (2.5) with base { &, &, ..., &} corresponding to ag, @y, ..., a; [16]. Then
A= (Xl_oc,d,|c,=0if 5, # 0} € T!_, Z&, is evidently a finite subroot system of
A with base IT,:= {&]0 < i</, s, = 0}. The reduction ¥/ _;Z&, — Q with &, > g,
has kernel Z(X!_,n,a;) and so is injective on A,. Thus II; is a base and W, is its
Weyl group. Finally, then, S is generated by the r, B € Ajand S = W,. O

In the case when X is only assumed to be semisimple, we have, corresponding to
the decomposition K = K; X --- X K,, decompositions

A=A U---UA, T=I,U- VI,
W=W'x---xW', F=Fx---XF etc.

Each A, produces its own numerical marks n{", j = 1,...,1"?, and each conjugacy
class of EFO in K is specified by an r-tuple [s®,...,s(”], where each s\ =
[s§9,...,5/3] accords with K1-3. The common order of the elements of the
conjugacy class is the least common multiple of the constituent EFO determined by
the s,

For a given s = [sV,... 5], W, = Wiy X --- X W, and the number of EFO
in T conjugate to exp 27is is

[WhWh] x - x[W W] = [W:Whx - XWin] = [W:W,].
Thus Proposition 1 holds also when X is only assumed to be semisimple.

3. Decomposing Class Functions. Let K be a semisimple simply connected
compact group as before. We consider now the integral representation ring R(K) of
K, that is, the Grothendieck ring formed out of the isomorphism classes of unitary
representations of K, with addition and multiplication derived from the formation
of direct sums and tensor products. For each unitary representation ¢ on a space V
we have the character x;, = x,: K = C.If V has the weight space decomposition
(3.1) V=@ v

AeQ
where § C t* is the weight system of V relative to 7, then x, restricted to T is
given explicitly by
(32) Xelr= X (dimcV?)e?™™.
A€Q
This actson x = exp27iX € T by

(3.3) Xy (x) = X (dimcV)e2mtX,
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For each of the fundamental weights w,,...,w; of (2.1) denote by ¢, the unitary
representation of K with highest weight w; and let x, denote the corresponding
character. Let X(K) be the ring generated by all the characters x, as y runs over
all the unitary representations of K. The following facts are well known [1]:
RR1: the set of x,, as y runs over the irreducible representations of K is a Z-basis
of X(K);
RR2: R(K) = X(K)via[V] = x;
RR3: X(K)=Z[x,,--->X4]and Xq. ..., X,, are algebraically independent over
Z.
Furthermore, define

Z[P] = {¥ ae* |\ € P, a, € Z, finite sums} .

Then Z[P] admits an action of W through we?"*:= ¢27*A and for the subring of
W-invariants, Z[ P]¥, we have [1, 6.19].

RR4: X(K) = Z[P]".
We denote by X (K) the complexification C ® ; X(K) of X(K).

Our point of view is that we are presented with an element f of X (K ) which we
know as a function (at least on sufficiently many EFO). The object is to compute the
decomposition

f= Z‘%Xw a,€C,
guaranteed by RR1. It turns out to be better to compute in terms of the orbit sums.
For each p € P, the orbit sum defined by p is
(3.4) o= Y e ez[P]”,
AeWu

where Wp:= {wpu|w € W}. Clearly, ¢,, = ¢, forall w € W, p € P, so we restrict
our attention to ¢, for dominant p. We recall that the set of dominant elements of
P, P**, is defined by

pEP e (p,a)>0 foreachi=1,...,1
Every W-orbit of weights contains exactly one dominant element.

If ¢ is a representation of K on the space V' with weight space decomposition
(3.1)andif Q**:= QN P**, then
(3.5) Xe= L (dimcV*)¢,.

AeQt
The weight multiplicities dim¢ ¥ for dominant A are fundamental quantities in the
computational theory of simple Lie groups. The reader is referred to [3], [17], [18] for
more details. Extensive details of dominant weight multiplicities appear in [4].

We introduce the level vector | € t, uniquely specified by (a;,1) = 2fori=1,...,1
(cf. [4, Table 1]). Using I, take any partial ordering < on P such that A < p if
(N 1) < {p,1). In particular, if p — A = Ec,a; with ¢; € N then A < p. For each
p € P** the set of A € P** such that A < p is finite. Furthermore, all the weights
of the representation ¢/* with highest weight p satisfy A < p. Thus, if m):= dim¢ V'
in the representation afforded by y*(p € P**) and x,, is the character of y*, then
the system of equations
(3.6) X, = X m@y, vEPT y<y,

Ay
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determines ¢, in terms of the x, by means of the unipotent matrix (m?}). These
matrices, called dominant weight multiplicity matrices, are precisely the tables of [4].

A list {Aq,...,A,} of dominant weights is said to be consistent if for each A; all
the weights A occurring in the decomposition (3.6) of x, also appear in the list.
Normally, we wish to work with consistent lists of weights.

It follows from [2, Chapter VI, Section 3.4] that the set of orbit sums ¢, as A runs
over P77 is a Z-basis of X(K) and that ¢,,...,¢, is a set of algebraically
independent ring generators of X(K). We define

X'(K)={XcgrlN€P* c,eN}

Definition. We say that a subset 4 of T separates two subsets S;, S, of P if for
each pair (A,A,)) €S, XS, with A, # A, there is an x € 4 such that
exp(2miA,)(x) # exp(2mil,)(x). If §; = S, we simply say that 4 separates S;. If
f=1ZXa,e?™* € X(K), we say that 4 separates f if 4 separates the weights which
actually appear in the sum (a, # 0).

Let A be a finite Abelian subgroup of 7. We define

(-, :Z[P]xZ[P]>C
by
(3.7) <f1’f2>,4 = E fl(x)m’

where the overbar denotes complex conjugation.
Below we assume that A is W-stable: wAw™ C A for all w € W.

PROPOSITION 2. Let A be a finite W-stable ( Abelian) subgroup of T of order g. Let
Ape PN+
(1) If A separates WA and Wy, then

(O824 = dnu - gIWA|

where 8, is the Kronecker 8-function.
(i) In any case (¢,,$,) 4 is a nonnegative integral multiple of g|W \|.

Proof. We have
(rnd)a= 2 L X &7 0(x)= % Y e (x).

XE€EA cEWN TEW (o, T)EWAXWp x€A
Suppose that 4 separates WA and Wu. Then none of the nonzero differences o —
in this sum vanishes on A. Thus
(38) T e (x) = 8,8,

x€A

and (i) follows. Even without separation, the sum in (3.8) can only be 0 or g. If it is
g, so that {o} and {7} are not separated by 4, then neither are {wo } and {wr},
w € W, and hence we obtain a contribution of g|WA| to (¢,,$,),. Thus (ii) fol-
lows. O ’

In the applications described in Section 1 the class functions to be decomposed
are sums of terms e2™* A € P, and hence lie in X*(K). Because of its importance,
we prefer now to restrict ourselves to this situation and to make some comments
about the general case at the end of the section.
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Thus let
(3.9) f= XL a¢,€ X' (K).
Aeptt

The a, € N, but are otherwise unknown. Let A be a finite W-stable subgroup of T
of order g. Then

(3.10) b= (gWA) '(f 92D
1s an integer and

(3.11) by > ay

with equality if A separates f. Since

(3.12) f(1) = X a,]WA|

it is easy to check when {a,} is in fact a solution to (3.9).

To diminish the work in summing involved in (3.10) we now assume that
A=T,={x € T|x"=1} and use the results of Section 2. Thus let s,..... S,
denote the points of F N Q" and let x, = exp27is,. j =1...., h. Let

(3.13) S=w.|. =1, h.

so that there are in T precisely |W|/S; elements conjugate to x,

In addition, we assume that the dominant weights appearmg in (3.9) are amongst
the set {A,.... A,}. where A < A,. Foreach j=1..... r let L, be the
order of the stabilizer of A, in W. Thus ]W}\ | = [W|/L,. Then Eq. (3.10) becomes

(3.14) bA/=n"LJZ ST (x) e (x).  j=1..... r.
i=1

where we have written ¢, for ¢, and the overbar denotes complex conjugation.
The equations (3.14) suggest that we define the » X A matrix U = U!"! by

(3.15) U, = n—’/a/Lj/S, $(x,)

If T, separates the weights of WA, U --- UWA . then. replacing f of (3.9) by ¢,.
we have from (3. 14)

8, —n-’LZS ', (x,) ¢,(x,) \/L/LAZ WU 1<koj<r.

Thus

(3.16) uu’T =1
In terms of U, (3.10) reads
(3.17) (byeveeiby ) = LUV (f(x)eoo f(x)

where L = diag{L,..... L.} and S = diag{§,..... S,
The r X h matrix

(r X r identity matrix).

rxr

(3.18) (D) = n WL TVS™ = n7'L(9,(x,))S
is called the decomposition matrix at torsion n. Of course. D!") depends on the choice
of weights {A,..... A, }. There are fairly natural choices for these—for example all

the dominant weights up to a given level, or all the dominant weights of a given



CLASS FUNCTIONS ON COMPACT SEMISIMPLE LIE GROUPS 809

congruence class (see Section 4) up to a given level. With this in mind, it makes sense
to compute the decomposition matrices for suitable n once and for all. In Section 4
we will show how this can be done in conjunction with the computing of the orbit
sum values ¢,(x;). The question of knowing how large n needs to be to separate the
required weights is not easy. In Section 6 we give a reasonable upper bound on 7. In
practice, we have been experimentally determining suitable n somewhat lower than
this bound.

On the basis of (3.10), (3.11) and (3.12) it appears that in principle the a, might
be determined by minimizing trial solutions 5{™ for various small n. Our experience
is that this is not particularly effective. Once nonseparation becomes prevalent, the
b{" become badly wrong and several poor overestimates are of little use.

The development through (3.10)—(3.18) is unchanged if f in (3.9) is replaced by an
element of X (K'), except that b, in (3.10) is no longer necessarily an integer and
(3.12) is no longer a decisive test for a correct solution. As long as one knows that
®x,s - - -+ Pa, are the only orbit sums in the decomposition of f and (3.16) holds, this
is not essential.

4. Bootstrapping. Up to this point we have been concentrating on a technique for
decomposing class sums, given prior knowledge of the orbit sum values on suitable
sets of EFO. In [18] we devoted much attention to the problem of computing
character values, and although the method advocated there is indeed practical for
ranks say < 10, it still can become fairly laborious when large numbers of EFO are
involved. In the process of decomposing class functions it becomes possible to use
decompositions available at any moment to compute unknown orbit sum values
which in turn allow further decompositions. This leads to a bootstrap approach to
computing both decomposition matrices and orbit sum values in which the orbit
sums need only be evaluated by summing at the so-called elementary dominant
weights [19]. The elementary dominant weights are the fundamental weights corre-
sponding to the ends of the Coxeter-Dynkin diagram (see below). The orbit sum
values for other dominant weights are computed by using various tensor and
alternating products as we now explain.

Let us assume that {A,,...,\,} € P*" is ordered and complete with respect to
level in the sense that

(i) i<j=A.D <AL
(4.1) (i) ifp e P**and (u,1y < (A1)
for some j then p € {N,,..., A\, }.

In particular, such a set is consistent. We also assume that we have a set
x;=exp2mis;, j=1,...,h, of EFO which represent the conjugacy classes of a
finite W-stable Abelian group A4 which separates {A,,..., X, }. For simplicity we will
actually assume that 4 = T, as defined in Section 3.

Our object is to compute both the orbit sum values ¢, (x;) and the decomposition
matrix D!") (3.18). This is accomplished by an inductive process on the level. If the
values ¢ (x;), j=1,...,h, areknown for A,...,\,_, and if we can write

(4.2) =M 4N, A A %0
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(where necessarily r, s < p), then the class sum ¢, - ¢, decomposes as

r—1
(4.3) O, P, T, T kEl ada,
where the quantities a, € N. By assumption, the values ¢, (x;), kK < p, are known
and hence so are the first p — 1 rows of the decomposition matrix D[], That is
sufficient to determine a;,...,a,_; by direct matrix multiplication using (3.17),
whence we have qb,‘p(x ;) from (4.3).

If no decomposition (4.2) is available it is because A, = w, where w is one of the
fundamental weights (2.1). Provided that w does not belong to one of the ends of the
Coxeter-Dynkin diagram—that is, a node attached to only one other node—we can
use the method of alternating tensors to compute the orbit sum values. There is
always an A-type string of nodes from some end to the node belonging to w—say

(4.4) tl t2 N tp—l tP

where w = w, . Let V' be the irreducible representation with highest weight «,. We
will denote characters by the symbol x subscripted by either the name of the
representation space or the highest weight (for an irreducible representation),
whichever is convenient. Then we have

(4.5) Xaryy = ¢, + Y a9,

A<w
This is well known [10], although it is usually expressed with characters rather than
orbit sums on the right-hand side of the equation.

Now the values of x,»;, on EFO are computable directly as long as the so-called
power maps are available. These are the mappings which describe for each EFO the
conjugacy classes to which each of its powers belong. Precisely, they are the
mappings

(4.6) pi{l,....,m;} = {1,..., b}, j=1,...,h,
which provide for each of the EFO x, (with order m,) the unique element x 2,(k)
which is conjugate to x", k=1,...,m; This type of information is not hard to

obtain by methods descnbcd alrcady in [18, Section 5].
Assuming that the power maps are in place, we have the formula [25, §12], [20]

(4.7) X(APV)(x) = lT E h[dlo([d])(XV(xl))dl T (XV(xp)) “

where [d] = [d,,...,d,] runs over all partitions
142% ... p%bof {1,...,p);
pldl = r!

14d,! - - - dea’p!

is the size of the conjugacy class of the symmetric group S, with cycle type [d]; and

0:S, — { +1} is the alternating character,

0([d]) = (_1)d2+d4+
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Again the a, in (4.5) are obtained from the part of D!"} already available, and the
values ¢, (x;) are obtained from (4.7) and (4.5).

In this way, the pth row of D!"! is constructed, thus completing the induction
step. Needless to say, the decompositions (4.3) and (4.5) may be used for the
computing of arbitrary character values. The idea of using various classes of tensors
to compute character values is not new. Indeed, it is the approach of J. Conway and
L. Queen in [5]. However, their computations are very much special to E; and there
are no bootstrapping ideas to determine their tensor decompositions.

The additional complexity involved in (4.7) has to be weighted against the direct
computation of the corresponding orbit sum. For higher-rank algebras there is no
question that (4.7) is more efficient, as a simple example shows. In D, the
fundamental representation corresponding to the trivalent node involves computing
278! /226! = 1792 cosets before any summing is begun, whereas (4.7) can be utilized
with a fork node and p = 2 to give

(4.8) xarv(x) = % (x)” = x, (x)}.

5. Modular Arithmetic. If one examines the entire collection of algorithms involved
in computing weights, weight space multiplicities, and so on [3], [4], [17], [18] one
sees that it is only in the evaluation of the orbit sums and character sums that real
arithmetic enters. Its presence brings more than just loss of aesthetic appeal:
round-off errors become a very acute problem in the high-rank/high-dimension
cases, even when only integer answers are sought. Thus, in E; we found in using the
63 conjugacy classes of elements of order 8 that the round-off errors on a Cyber 835
forced us to stop long before separation became a problem. Such problems are
completely eliminated by using mappings of cyclotomic integers into suitable prime
fields.

Let p be a prime and let n be a positive integer dividing p — 1. Let O, be the ring
of the nth cyclotomic field L,. Then in the prime field F, = Z/pZ there is a
primitive nth root £ of 1. Since the minimum polynomial of ¢ over F, is the nth
cyclotomic polynomial ®,(x) (reduced modulo p), there is a ring homomorphism
(5.1) ¢: 0, = Z[e2™/"] - F,
such that ¢|, is reduction mod p and ¢(e?™/") = ¢. We define the “conjugate
map” ¢: O, — F, through ¢(e>™/") = £71. Thus, ¢(2) = ¢(z) for all z € O,. Most
importantly, the kernel of ¢ in Z is pZ.

Now in the orbit sum and bootstrapping methods of Sections 3 and 4, we may
perform all the calculations in F, rather than in C, provided that we choose a prime
p such that the torsion n and the Weyl group order |W| satisfy

The resulting modular decomposition matrix
(5~3) ) ¢(Dj[in]) = ¢(n_1Lj¢j(xi) Si)
can be used to determine modular decompositions
T n T
(5.4) (¢by, ..., ¢b>\,) = (6D")(f(xy),- .-, 8f(x4))
of integral class sums. The decomposition (by,...,b >\r)T then can be recovered

provided that we begin with a suitably large prime p, or we use several primes and
the Chinese remainder theorem.
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The idea of number theoretical transforms is not new. J. D. Dixon advocated the
modular calculation of characters of finite groups in [6], and their use in convolution
algorithms is well established [21]. The situation here does however seem particularly
suitable for their application, since the intermediate complex quantities are very
large whereas the final answers are both integral and relatively small.

As an example we have used the bootstrapping in the modular setting to compute
the decompositions (4.3) and (4.5) for the first 38 (by level) weights of E;. For this
we used the elements of order n = 8 and the prime 228 — 119.

One should note that the orbit decomposition (4.3) and (4.5) tend to involve much
larger integers than their corresponding reformulations in terms of characters. Thus
it is preferable to perform the conversion back to Z only after such a reformulation
(using the triangular system of equations (3.6)).

6. Additional Remarks. (i) We begin with an estimate on the size of n required for
T, to separate the weights of A = WA, U --- UWA,, where A,..., A, are some
given dominant weights. By definition we require that for each pair A, p € A,
A # p, there is a point X of (+)Q " such that (A — p, X) & Z. Since the Z-dual of
Q" is P, this is equivalent to requiring that A — p & nP. We assume that X is
simple.

Let w;,...,w, be the fundamental basis of P and let «*,...,a/ be the basis
Z-dual to it in t (see Section 2). Let A, = X{_, ¢, j = 1,...,r, and define

C=max{c,|1<i<l1<j<r},
6.1 !
(6.1) M=max{ZniAcij|l <j<r},
i=1
where n;,...,n," are the numerical marks of the “dual” group K" of K (see
Section 2).

PROPOSITION 3 (K simple). If n > C + M then T, separates A.

Proof. Taken > C+ M. Let A, p € A, A # p. We show that A — u & nP. By the
W-invariance of P and nP we may assume that p is dominant—say p = A,. Let
A = wA . The coefficient of w; in wA, is

<w)\j,a,.’\> = <}\j,w'1aiA>.
Now w'a/ is a coroot (that is a root of the root system A" := W{a/",...,a,*} of
K "). Thus wle/'= X} _ daf with |d,| < nf, j=1,...,1 and (A, w /)| <
Ynlc,, < M. Thus the coefficient of w, in wA; — A, =A — p is bounded in
absolute value by M + C. This proves the result. O

Formulas for the number 4 (n) of conjugacy classes of EFO in 7,, are known. The
semisimple case follows directly from the simple case, and for K simple, generating
functions for s (n) appear in [18]. Explicit formulas are given by Djokovi¢ in [7].
When n and |W| are relatively prime (or even under slightly more relaxed conditions
[8]), Djokovi¢ has given the elegant formula

L (m ;tn
(6.2) hn) = 11 (—mi+ 1),
where m,, ..., m, are the exponents of K.
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(ii) The congruence classes of weights are the Q-cosets of P. Any Weyl group orbit
and any weight system of an irreducible representation of K lies entirely in such one
congruence class. Thus we may speak of the congruence class of an orbit sum or an
irreducible character. The center Z of K may be identified with the character group
X(P/Q)of P/Q by
(6.3) e X(P/Q)o ez
with z? acting on weight spaces of weight A € P by

20|Vx = 0()\ + Q)

Letz? = [z§,. .., zf] be the corresponding point in F (actually the z° are the vertices
of F [18]) so that
(6.4) 2% a0 = 2R,
Now if A, u € P, then
(6.5) Z e2miA-p2’y _ |Z|3x,n,
bex(P/Q)
where A = A + Q, i = ¢ + Q. Thus we see that
(6.6) (Dr:Bu)z = |1ZIIWA|[WhlS5 -z,

so that Z, and hence any group A C T" which contains Z, can separate the
congrunce classes.

Let {¥1,..., %z} be the clements of P/Q and let v,,...,v,z be some arbitrary
representatives of the y; in P. Then for any class function f= Y a,e?"™ on T we
have the decomposition

12|
f= X fuo where f, = ) a,e®™™,
k=1 A&
and from (6.5) we have
(6.7) fl) = L ertminaip(shy).
| loeX(P/Q)

In many problems, for instance those involving tensor products, it is possible to
keep the congruence classes separate and there is no need to involve the center.
However, in problems like group-subgroup reductions, mixing of classes is unavoida-
ble and (6.7) provides a useful way to separate them.

(iif) As we have suggested above, the use of orbit sums has several advantages over
the direct use of characters. We briefly consider here the situation with characters.
Consider first the problem of numerical integration of a class function f on G.
Assuming Haar integrals [; and [ on G and T, both normalized so that [;1 =1 =
/71, then there is a well-known formula of H. Weyl,

/G f=w? fT fdd,

where d = I1, c o+ (¢™* — e~™*) is the discriminant function on T [1, Chapter 6]. If
f=Z\cpae’ ™, a, € C, then

f f= / Z a}‘ez’fi<)\’x> =-ay.
T t/@" A
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On the other hand,
y Q2mNX) = {"1 if (A,Q") CnZ,
Xelgr/on 0  otherwise.
Thus,
(6.8) [f=wwt [ pdd =it (fdd)(x),
G T

Xeior/Q"

where x = exp 2wiX, provided that the weights appearing in fdd are separated from
{0}. In view of the orthogonality relations for characters [1, Chapter 3], we have for
irreducible characters x and x’ of K
(6.9) Wittt Y (xd(xd))(x) =8,

x€;0"/Q"
provided that T, separates the weights appearing in the function xx’ dd. This
certainly allows numerical decompositions of character sums in principle. However,
separating the weights of dd is an additional expense and, unlike the case of the
orbit sums, we do not have well-defined useful information (like (3.11)) in the failure
of separation.

(iv) We have always assumed that an advance knowledge of the weights which
may occur in the character decomposition of a given f € X(K) is at our disposal. A
few examples of this might be helpful. Consider the problem of decomposing the
tensor product (1.2) or, what amounts to the same thing, decomposing the product
(1.3) of xy,xy, € X*(K). If the highest weight of V; is A, i =1,2,...,r, then
A, <A+ A, i=3,...,r Infact, it can be shown that A,,..., A, lie in the set £ of
dominant weights of the irreducible module of highest weight A; + A, (£ is
complete). Although it is irrelevant to the orbit sum method, it is interesting to note
that there is a “least” A, say A;, with A; <A, for i =3,...,r. This A; is the
dominant weight in the W-orbit of A; — A, [24].

(v) Consider the problem of subgroup reduction. Here we have K C K and the
task is to perform the character decomposition or branching of a function f € X *(K)
when it is restricted to K. If T and 7" are maximal tori of K and K, respectively,
then we may always assume that 7 C T. Then, under restriction A — A, weight
systems of K-modules project onto weight systems of K-modules. It is always
possible to choose total orderings < and < on the weight lattices P and P (relative
to T and T) such that for all A, i € P, A < u implies A < ji [9, Chapter 1]. Use
these to order the corresponding root systems A and A, and let IT and IT be the
corresponding bases. Then for

&e}*, OQ}'i=>O<~a. 3
If fi is a dominant weight in P then the W-orbit Wji lies in {ji — Xc;a|a € II,
¢, € N}, and hence for all A € Wji, A < p. Thus we have strict control over the
weights appearing in the reduction of orbit sums.

7. E; Example. The Tables 1 and 2 below contain the dominant weight matrices
(m®) for the E-congruence classes 0 and 1. The matrix for class 2 can be obtained
directly from that of class 1 by permuting the labels according to the E¢ diagram
symmetry. These tables are examples of the form of the main set of tables of [4]. In
addition to the dominant weight multiplicities, Tables 1 and 2 provide the following
auxiliary information about the representations.
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S.P.: Scalar product (A,A) of the dominant weight A, so normalized that
(a, a) = 2 det(Cartan matrix) for short roots a.

0O.S.: Orbit size, the number of weights on the Weyl group orbit of A.

LEVEL: The number of levels of the weight system Q(A).

DIM’N: The dimension of the representations with the highest weight A.

WEIGHT: The weight A given by its coordinates in terms of the fundamental
weights, arranged into a Dynkin diagram.

NUMBER: Numbering of dominant weights of the class (this has no canonical
meaning).

The Tables 3-6 below are examples of E, tensor product decompositions which
were obtained by the method outlined in Section 3. We took advantage of the
congruence classes and computed one decomposition matrix D for each class. For
E, we have the following values for h(n) = number of conjugacy classes of EFO in
T .

n*

n 23 4 5 6 7 8 9 10 11 12
h(n) 3 8 14 26 49 77 124 197 287 418 603

For the purposes of the example we chose the 77 conjugacy classes of EFO in T,
and constructed the corresponding decomposition matrices, referring to the ordered
list of E; dominant weights (cf. Tables 1 and 2). The elements of T, separate all the
weights in at least the first 30 weights of each congruence class. For instance, for
class O the matrix UUT (3.16) is I5y,c5p + Eys36 + Esays + Exgyp + Eggpp + Eggag +
Egpa + Egay + Eqy 51, Where Iy, is the 52 X 52 identity matrix and E;; is the
(i, j) matrix unit with 1 in the (i, j)th position and 0’s elsewhere. Thus one sees for
example that the orbits of weight #15 and # 34 are ‘aliased’ by 7. It is worthwhile
noting however that the elements of order 7 do better than one might anticipate
from Proposition 3. There, for class 0 and the first 30 representations, C and M of
Section 6(i) are 5 and 6, respectively, with corresponding value of 12 for n in
Proposition 3.

After removing the obvious symmetries, there are four types of tensor products
that one needs to consider:

class 0 ® class 0 — class0 (Table 3)
class 0 ® class 1 — class1 (Table 4)
class 1 ® class1 — class2 (Table 5)
class 1 ® class 2 — class 0 (Table 6)

The resulting tables were obtained by using the decomposition matrices on all the
mutual products of the first 10 nontrivial representations of each class and retaining
those which passed the (definitive) test (3.12). We have denoted the irreducible
representations by number-letter pairs where the number refers to the numbering of
the highest weight (cf. Tables 1 and 2) and the letter to the class by the convention
A o class 0, B & class 1, C & class 2. Thus a tensor product of representations 2B
and 3C is denoted by (2B, 3C).

There are other E, tensor product decomposition tables in the literature [11], [26],
[28], calculated by entirely different methods. We have made no attempt to compare
these methods with the one here.
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TABLE 4 ( continued )
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Finally, let us recall that the unique feature of the decomposition matrix approach
is in its applicability to any class function (providing that the weight systems of the
irreducible components are separated by the 7, in question). The present example is
a result of our attempt to determine by direct computation how far the separation

extends using 7,. The decompositions were computed in a couple of minutes on a
CDC Cyber 835.
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